If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying y2 + -14y = 340 Reorder the terms: -14y + y2 = 340 Solving -14y + y2 = 340 Solving for variable 'y'. Reorder the terms: -340 + -14y + y2 = 340 + -340 Combine like terms: 340 + -340 = 0 -340 + -14y + y2 = 0 Begin completing the square. Move the constant term to the right: Add '340' to each side of the equation. -340 + -14y + 340 + y2 = 0 + 340 Reorder the terms: -340 + 340 + -14y + y2 = 0 + 340 Combine like terms: -340 + 340 = 0 0 + -14y + y2 = 0 + 340 -14y + y2 = 0 + 340 Combine like terms: 0 + 340 = 340 -14y + y2 = 340 The y term is -14y. Take half its coefficient (-7). Square it (49) and add it to both sides. Add '49' to each side of the equation. -14y + 49 + y2 = 340 + 49 Reorder the terms: 49 + -14y + y2 = 340 + 49 Combine like terms: 340 + 49 = 389 49 + -14y + y2 = 389 Factor a perfect square on the left side: (y + -7)(y + -7) = 389 Calculate the square root of the right side: 19.723082923 Break this problem into two subproblems by setting (y + -7) equal to 19.723082923 and -19.723082923.Subproblem 1
y + -7 = 19.723082923 Simplifying y + -7 = 19.723082923 Reorder the terms: -7 + y = 19.723082923 Solving -7 + y = 19.723082923 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '7' to each side of the equation. -7 + 7 + y = 19.723082923 + 7 Combine like terms: -7 + 7 = 0 0 + y = 19.723082923 + 7 y = 19.723082923 + 7 Combine like terms: 19.723082923 + 7 = 26.723082923 y = 26.723082923 Simplifying y = 26.723082923Subproblem 2
y + -7 = -19.723082923 Simplifying y + -7 = -19.723082923 Reorder the terms: -7 + y = -19.723082923 Solving -7 + y = -19.723082923 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '7' to each side of the equation. -7 + 7 + y = -19.723082923 + 7 Combine like terms: -7 + 7 = 0 0 + y = -19.723082923 + 7 y = -19.723082923 + 7 Combine like terms: -19.723082923 + 7 = -12.723082923 y = -12.723082923 Simplifying y = -12.723082923Solution
The solution to the problem is based on the solutions from the subproblems. y = {26.723082923, -12.723082923}
| 20x+10+3x=37 | | ln(2x+3)=x-3 | | r=4y+4z | | 20x+10(-3x)=37 | | 1/6x^4-1/2^4 | | -15-4x=-8x+45 | | cos(2x)=2xsin(2x) | | 2.5x-11.85=8.4 | | (9-d)*9*(9+d)=693 | | 3x(6-x)squared=0 | | (2sinx-1)(1-cosx)=0 | | 16x^3-6x-2=0 | | 100x=200 | | (Xq+5)(xq-5)= | | 9=18-2x | | 30/100=10/x | | 6m+9m+10f+6f= | | 30/10=100/x | | 2/4-x/8-7/6 | | =2kx^3-kx+x+7 | | (4x-9)(x^2-2x-1)= | | 10k-26=44 | | x+1/2+1/4+315=x | | X*y=1000 | | Xxy=1000 | | 1/2+1/4+315=x | | (3x^2+2)(3x^2+2)= | | 3+4y=18 | | 13x-(x-4)=5x+20+x | | -1/2-1/4-315=x | | 49y-22=48y-7 | | 9(x+2)=4(X-1) |